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This paper presents a new approach to the direct numerical simulation of potential
problems with many spherical internal boundaries, e.g., many spheres in potential
flow. The basic idea is to use a local analytic representation valid near the particle
and to match it to an external field calculated by a standard finite-difference (or
finite-element) method. In this way the geometric complexity arising from the irreg-
ular relation between the particle boundary and the underlying mesh is avoided and
fast solvers can be used. The results suggest that the computational effort increases
less than proportionally to the number of particles and, additionally, that meshes that
would be excessively coarse as measured in terms of particle radius in a conventional
calculation can be used without significant loss of accuracy. In separate (if prelimi-
nary) work the same approach has been extended to the simulation of viscous flow
about spheres and cylinders at finite Reynolds numbers.c© 2001 Academic Press
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1. INTRODUCTION

The practical importance of disperse multiphase flows, coupled with great progress in
computational hardware and software, has motivated a strong interest in the direct numerical
simulation of particle flows. While a good deal of effort has been directed to low-Reynolds-
number flows (see, e.g., Refs. [1–8]) and to the simulation of flows containing point-like
suspended particles (e.g., Refs. [9–11]), several methods have also been developed for
finite-size solid and fluid particles at finite Reynolds numbers. For example, Refs. [12–18]
describe finite-element methods for the calculation of particle flows in two and three spatial
dimensions; Ref. [19] describes an approach based on the so-called immersed boundary
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strategy [20], while Ref. [21] advocates solving the elasticity equations inside the particles
at the same time the Navier–Stokes equations are solved in the fluid. In the recent methods
described in Refs. [22, 23], suitably augmented equations are solved both inside and outside
the particles, a strategy that has proven quite effective in the calculation of free surface
flows (see, e.g., Refs. [24–27]). An alternative approach, the so-called CHIMERA method,
consists of the use of a fixed global grid on which local grids, attached to each particle,
move (see, e.g., Refs. [28, 29]).

An unquestionable strength of the methods mentioned so far is their adaptability to
broad classes of solid and fluid particles, if at the cost of complexity and computational
overhead. Here we present an alternative approach—less versatile because it can only be
applied to particles with a simple shape, such as spheres and cylinders, but simpler and
computationally efficient. This paper describes the method in its application to the simplest
case, that of spheres in a potential field; some preliminary results for steady and unsteady
Navier–Stokes flow around spheres and cylinders have been presented in [30].

As explained below, our numerical experience to date suggests that the computational
load of the method grows less than proportionally to the number of particlesN. This feature
is common in methods (such as those of Refs. [24–27]) employing a fixed grid independent
of the number of particles. On the other hand, for many of the existing methods (e.g., for
potential [7, 31] or Stokes [7] flow), the computational effort increases at least linearly
with N.

In some way, the method is similar in spirit to the CHIMERA approach but, unlike that
method, it relies on an exact analytical solution in the neighborhood of each particle, rather
than on a local numerical solution. One advantage is greater accuracy, as the interpolation
between the fixed and moving grids necessary with the CHIMERA approach is avoided.

The basic idea underlying the present approach can be simply explained in the following
terms. Enclose each particle by a surfaceSQ (Fig. 1), and assume that the problem at hand
is linear or can at least be approximately linearized in the region of space between the
surface of the particle andSQ. (How this can be achieved for the case of the Navier–Stokes
equations is mentioned below.) Let the solution of the problem onSQ be denoted byφQ.
Then, by the linearity of the problem, there will be a linear operatorGQ connecting some
quantityψ related toφ (perhapsφ itself) evaluated on the particle surface toφQ,

φQ = GQψ + gQ, (1)

where we have allowed for the possible presence of a known forcing termgQ. Let SP be

FIG. 1. Definition of surfacesSQ andSP enclosing a particle.
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another surface enclosing the same particle and, for example, internal toSQ (Fig. 1). For
this surface we may similarly write

φP = GPψ + gP. (2)

By eliminatingψ between these two relations, we find a consistency relation betweenφQ

andφP that we write as

φ̃P = GP(GQ)−1φ̃Q, (3)

where(GQ)−1 may need to be understood as a generalized inverse and

φ̃ = φ − g. (4)

If the mathematical nature of the problem is such that the satisfaction of the consistency
relation (3) ensures the correct solution in the region between the particle andSQ, then the
boundary conditions at the surface of the particles can simply be replaced by a corresponding
set of relations of the type (3) to be imposed between the values ofφ on the surfacesSP and
SQ surrounding each particle. In practice, an obvious advantage of this approach is that the
surfacesSP, SQ can be chosen to conform to a particular discretization of the computational
domain so that the boundary condition on the particle surface—the satisfaction of which
often requires irregular grids—can be simply transferred to the nodes of a regular grid.

An important conclusion of the well-posedness of an equation such as (3) stems very
simply by noting that, if the original problem is well posed,GP andGQ depend continuously
on the surfacesSP and SQ. Thus, if SP is close toSQ, the operatorGP(GQ)−1 would be
close to the identity operator.

The previous description is very general and leaves many details—both mathematical
and numerical—unexplained. In the rest of the paper we present a detailed exposition for
the case of potential flow from which several valuable numerical features of the method
will become apparent. In the last section we comment on how the approach can be extended
to other problems. These extensions will be described in future articles.

We call our method Physalis.2

2. POTENTIAL FLOW

Consider the potential flow around a number of spherical particles or bubbles, not neces-
sarily all with the same radius. In particular, the radius may depend on time, although, for
simplicity, we do not explicitly consider this case here.

The velocity potentialφ satisfies Laplace’s equation

∇2φ = 0, (5)

subject, on the surface of each particle, to the condition

(∇φ − w) · n = 0 on|x− y| = a. (6)

2 According to Webster’s Dictionary, this word denotes, a genus of herbs characterized by a bladdery calyx
which encloses an edible fruit; also called ground cherry. In French the word also stands for “amour en cage.”
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Here y is the instantaneous position of the particle center,w the instantaneous particle
velocity,n the outward unit normal, anda the particle radius.

The general solution of the problem in the neighborhood of the generic particle may be
written down at once and is

φ(x) =
∞∑
`=0

∑̀
m=−`

(
r ` + `

`+ 1

a`+1

r `+1

)
Ym
` (θ, ϕ)b`m −

a3

2r 3
w · (x− y), (7)

where the position vectorx is written asx = y+ r , with the vectorr expressed in terms
of spherical coordinates (r, θ, ϕ) centered at the center of the particle; theYm

n are spherical
harmonics and, by varying the coefficientsb`m, the totality of possible potential flows around
the sphere can be captured. In the absence of other boundaries, the series in (7) converges
at all pointsx inside a sphere with radius equal to the distance between the centers of the
given sphere and the sphere closest to it.

If (7) is evaluated at the pointsQ of a surfaceSQ enveloping the sphere, we have
a particular case of the general relation (1) in whichψ is an infinite-dimensional vector
containing the coefficientsbnm, the operatorGQ is the summation with coefficients evaluated
at the points ofSQ, and the functiongQ is the last term of (7) proportional tow, also
evaluated at the points ofSQ. The standard theory of spherical harmonic expansions (see
e.g., Ref. [32]) ensures that, givenφQ, all the coefficientsbnm can be uniquely calculated;
for example, ifSQ is a sphere of radiusR, we have(

R` + `

`+ 1

a`+1

R`+1

)(
Ym
` ,Y

m
`

)
b`m =

(
Ym
` , φ +

a3

2r 3
w · (x− y)

)
, (8)

where (,) denotes the scalar product over the unit sphere. We thus conclude that the operator
GQ is well defined. Analogous considerations apply toGP andgP when (7) is evaluated at
the points ofSP.

The developments in this section have been explicitly written down for the case of the
Neumann problem (6). It is obvious that a similar treatment can be followed for Dirichlet
or mixed boundary conditions.

3. NUMERICAL FORMULATION

We now describe a numerical method for implementing the basic idea outlined at the end
of Section 1. The particular implementation we describe is based on finite differences which,
on regular domains, give rise to algebraic systems that can be solved noniteratively with fast
solvers. On irregular domains it might be advantageous to use a finite-element discretization
to which the present method can be adapted equally well. For brevity, however, we do not
consider this possibility further.

The first step is to discretize the surfacesSP andSQ by approximating them by “cages”
consisting of a finite number of pointsNP and NQ, respectively. In the finite-difference
formulation that we use, these points will be taken to belong to the regular grid into which
the computational domain is discretized. Figure 2 shows square (or cubic) cages of grid
points, but there could be good reasons to use other shapes, e.g., in the Navier–Stokes case.
Next, we truncate the summation in (7) to a maximum valueL of the index̀ , which has the
effect of retaining only the firstL(L + 2) coefficientsb`m. We assemble these remaining
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FIG. 2. Discretization of surfacesSQ andSP enclosing a particle intoNP andNQ points.

coefficients in a vectorb = {bk}, k = 1, 2, . . . , L(L + 2), where the indexk is shorthand
for the pair of indices(`,m). We assume thatNQ ≥ L(L + 2).

We now introduce an ordering of the outer cage points, denoted byQ1, Q2, . . . , QNQ ,
and a corresponding ordering for the pointsP1, P2, . . . , PNP of the inner cage. With this
discretization, the operatorGQ is approximated by theNQ × L(L + 2) matrix GQ with
elements

GQ
hk =

(
r `h +

`

`+ 1

a`+1

r `+1
h

)
Ym
` (θh, ϕh), (9)

where (rh, θh, ϕh) are the coordinates of thehth point of the outer cage with respect to the
particle center andk ≡ (`,m). Note that this matrix only depends on the relative position of
the sphere center with respect to the points of the outer cage. In a similar way, the function
gQ has been discretized into anNQ-dimensional vectorgQ with components

gQ
h = −

a3

2r 3
h

w · (xh − y). (10)

With this discretization Eq. (1) becomes

φQ = GQb+ gQ. (11)

An effective way to find the generalized inverse ofGQ is to use the singular-value
decomposition (see, e.g., Refs. [33, 34])

GQ = UDVT
, (12)

where D is a squareL(L + 2)× L(L + 2) diagonal matrix,V is anotherL(L + 2)×
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L(L + 2) square matrix, andU is NQ × L(L + 2); these matrices satisfy

UTU = I, VVT = I, (13)

where I denotes identity matrices of suitable dimension. By using these properties, we
readily find

(GQ)−1 = VD−1UT , (14)

and we may write (3) in the form

φ̃P = Bφ̃Q, (15)

where theNP × NQ matrixB is given by

B = GPVD−1UT , (16)

and

φ̃ = φ − g. (17)

Equation (15) is the discrete version of the consistency condition (3) and, as noted near the
end of Section 1, the matrix (16) may be expected not to differ too much from the identity
matrix and to be therefore well-conditioned. This expectation is borne out by our numerical
experience.

Following the plan outlined in Section 1, it is now necessary to solve the Laplace equation
on the domain imposing relations of the form (15) on the nodes that constitute the cages
attached to each particle. For this purpose we let

Lφ = 0 (18)

be a finite-difference discretization of the Laplace equation (5). Then the conditions (3) are
imposed iteratively solving

Lφ j+1 = Mf j , (19)

where the superscript denotes the iteration number,M is a projector on theP-nodes of the
inner cages, and

f = Lφ+ βC(φ̃P − Bφ̃Q), (20)

whereβ is a relaxation factor (chosen to be around 0.1) andC the common diagonal element
of L. As j increases, the solution of (19) tends to the solution of (18) at all nodes other than
those belonging to the inner cage. For these latter nodes, at convergence, one has

Lφ = Lφ+ βC(φ̃P − Bφ̃Q), (21)

i.e., (15). Since the satisfaction of this relation also implies that of the Laplace equation,
we thus conclude that the procedure generates a discrete approximation to the solution of
the Laplace equation over the entire computational domain. For the solution of the system
(19) we use a fast solver; the iterative procedure—which is in effect the way in which
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information is exchanged between the cages and the surrounding flow—is only needed to
implement the constraint (15).

After convergence, the potential at the grid nodes outside the cages is given by the solution
of (19), while, in the inner regions between each particle and the cage, it is represented by
the spherical harmonic expansion (7) with coefficients that can be calculated from (12); by
evaluating (7) at all the grid nodes in the inner region and on the cage, one then completes
the calculation of the potential at all the grid nodes exterior to the particles.

As a final comment, it may be noted that the method contains in some sense a built-in
accuracy check in that the very fact that convergence of the iterative process occurs ensures
that the potential is accurately represented onboth cagesby thesameset of coefficients.
This feature implies that, within the error limits set for convergence, the local expansion
and the outer solution match in the region between the two cages.

In the examples that we consider here the computational domain is regular and one can
take advantage of the existence of fast Poisson solvers for such domains to considerably in-
crease the efficiency of the computation. For these solvers to work effectively, it is necessary
to solve (19) everywhere and, therefore, also inside the cages surrounding the particles. The
solution of the Laplace equation generated in this way is simply the solution of a regular
potential flow satisfying given boundary conditions on the cage boundary. Although not
relevant for the problem at hand, this is a well-defined mathematical entity. If algorithms
other than fast solvers are used, then the regions interior to the cages may of course be
skipped.

4. OVERLAPPING CAGES

When two or more spheres are close, it may happen that the respective cages overlap
(Fig. 3). We now describe a procedure for handling this situation. The details are tedious
but straightforward and an abbreviated description will be sufficient.

FIG. 3. Discretization of surfacesSQ andSP enclosing two particles.
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Let there bep particles inside the surface (cage)SQ. Then it can easily be proven, e.g.,
by a series expansion of Green’s formula as shown in the Appendix, that inside the cage
the potential may be represented as

φ =
p∑

α=1

∞∑
`=0

∑̀
m=−`

1

r `+1
α

Ym
` (θα, ϕα)d

α
`m +

∞∑
`=0

∑̀
m=−`

r `Ym
` (θ, ϕ)è m, (22)

where(rα, θα, ϕα) are spherical coordinates centered at the center of theαth sphere and
(r, θ, ϕ) are spherical coordinates centered, e.g., at the centroid of the volume bounded by
SQ. By discretizing the problem as before, we may rewrite this equation as

φ = Fd+ He, (23)

where the vectorsd, e contain all the coefficients{dα`m}, {eα`m} for all the particles, and the
matricesF,H are analogous toG defined in (9).

In the neighborhood of each sphere the potential may be represented analogously to (7)
used before:

φ(α) =
∞∑
`=0

∑̀
m=−`

r `αYm
` (θα, ϕα)b

α
`m +

∞∑
`=0

∑̀
m=−`

1

r `+1
α

Ym
` (θα, ϕα)c

α
`m. (24)

Of course, in the case of the Neumann problem (6), this expansion takes the form (7) but
here, for the sake of generality, we do not commit ourselves to the Neumann problem. We
merely note that the boundary condition on the surface of the spheres will lead to a linear
relation of the type

d = Cc+ f, (25)

where the vectorc contains the coefficients{cα`m} andf will depend on the known quantities
prescribed on the sphere, such as the translational velocityw of the previous section.

Our objective is to derive a relation analogous to (1) valid on the outer cage, after which
the same procedure as before can be followed. For this purpose we start by noting that the
problem of relating the coefficients{dα`m}, {è m} to the{bα`m}, {cα`m} is solved in Ref. [32]
(see also Ref. [35]) and leads to a relation of the form (see the Appendix)

c= Dd+ Ee, (26)

whereD, E are suitable (infinite) matrices. By using this relation to eliminatec from (25)
and solving ford we find

d = (l− CD)−1(CEe− f), (27)

which, when substituted into (23) evaluated at the pointsQ, leads to

φQ = GQe+ gQ, (28)

with

G = F(l− CD)−1CE+ H, g= −F(l− CD)−1f. (29)

The relation (28) is analogous to (1) in that it connects the values ofφ on the outer cage
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to the set of coefficients appearing in that part ofφ that is regular inside the cage. From
this point on, the same method described in the previous section can be followed for the
numerical solution. Our numerical experience shows that the matrices introduced in this
section are well behaved and the required inverses exist.

5. NUMERICAL DETAILS

The method is implemented in a box-shaped domain of dimensionsX,Y,andZ uniformly
discretized by means ofNx + 1, Ny + 1, andNz+ 1 grid points in the three orthogonal
directions. The grid spacings are given by1x = X/Nx,1y = Y/Ny, and1z= Z/Nz;
in the numerical examples that follow we have variedX,Y, and Z while maintaining
1x = 1y = 1z.

We start with a set ofN spherical particles, each with a velocitywα = (uα, vα, wα), α =
1, 2, . . . , N, centered at given positionsyα = (xα, yα, zα). In principle the method can
be applied to systems with different, possibly time-dependent particle sizes, but, for the
examples considered in this paper, all particles have the same fixed radiusa.

For each particle a “cage” must be constructed. For ease of coding and efficiency of
computation in this paper we use cubic cages, but this choice is not essential. In particular, it
proves undesirable for flow at finite Reynolds numbers for the reasons mentioned below (see
also [30]). Ifxα is the grid point closest to the center of theαth particle and corresponding to
indicesiα = (iα, jα, kα), the cage is constituted by the grid points with indicesiα − 1

2 Nc ≤
i ≤ iα + 1

2 Nc, and similarly for the other directions. The even integerNc is large enough
that the particle fits comfortably inside the cage; it ranges from 6 for low-resolution grids
with a/1x = 1 to 24 for larger cages or fine-resolution grids witha/1x = 4.

The six faces of the cube define the inner cageSP described in the previous section. The
outer cageSQ is constructed from the inner one by displacing the six faces outward by a
certain number of grid spacings. This number is normally chosen to be 1, as in the case
shown in Fig. 2, although we have also tested cases with 2 or more grid spacings without
noticing any significant difference in the results. It is important to stress that the need to
impose proper boundary conditions on the outer solution dictates that the inner cage form a
complete (if discretized) closed surface. However, the outer cage is only used to determine
the expansion coefficients by collocation according to Eq. (11), and, therefore, it only needs
to have a sufficient number of grid points that this equation be solvable. Hence it is expected
that “gaps,” or openings (e.g., at the corners), would not adversely affect the computation,
which conforms to our numerical experience.

With P (inner) andQ (outer) points defined in this fashion the matricesGP andGQ can
be constructed and combined to form the matrixB defined in (16). As noted before, for a
given cage shape and size, these matrices depend only on the particle radius and the location
of the particle center with respect to the grid points of the mesh. If, for example, all the
particle centers happened to coincide with grid points, all theB-matrices for each particle
would be identical. Of course, this situation would not normally occur, and, in principle,
these matrices would need to be computed at each time step for each particle depending on
the position of that particle with respect to the fixed grid. With a large number of particles
this requirement can be an excessive burden in terms of both computation and memory. To
alleviate this problem we use interpolation as follows. At the beginning of the calculation
we compute theB-matrices for a certain number of positions of the particle center with
respect to the grid, and then we effect a three-dimensional interpolation to approximate the
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FIG. 4. The cage is centered at the center of the shaded region whenever the particle center is anywhere in
this region. The open circles (and the analogous points in the third dimension) are the points corresponding to
which aB-matrix is computed. TheB-matrices for other particle positions are obtained by interpolation. In three
dimensions the procedure requires the computations of a total of 27B-matrices.

B-matrix appropriate for the actual position of each particle. If we definerα = yα − xα,
then it is clear that all the possible arrangements of the particle with respect to the grid
correspond to the range− 1

21x < rx <
1
21x, and similarly for the other two directions.

Hence we pickNint regularly spaced points in a cube of sides1x,1y,1z centered at a
grid point and calculateB-matrices for each one of theseNint positions (Fig. 4). With this
information, a look-up table ofB-matrices is constructed from which each element of the
B-matrix corresponding to any particle position is obtained by linear interpolation. In the
examples that follow this idea was implemented by takingNint = 27.

When two particles are so close to each other that their inner cages touch or overlap,
the code automatically switches to the scheme described in Section 4 and merges the two
cages. The points of the original cages that lie inside the merged cage are removed and
a newB-matrix is computed from (24) rather than from (11). In this case the number of
possible geometric arrangements is too large for an interpolation scheme to be efficient and
it is best to compute the matrices directly. For the cases described in this paper this difficulty
has not been a major drawback since the number of overlapping cages was usually small.

The Poisson equation (19) has been solved by means of a fast solver from the package
FISHPACK freely available fromhttp://netlib.org .

6. ILLUSTRATIVE RESULTS

To validate the proposed new method we have made many comparisons between the
results of the present method and those given by the multipole expansion method (see,
e.g., Refs. [35, 36]), which is based essentially on the use of the representation (22) for the
potential. In addition to ensuring the agreement of the two sets of results, it was important to
demonstrate that the present new results are independent of the cage size. The comparison
has also enabled us to assess the computational efficiency of Physalis with respect to the
multipole method.

It should be noted that, while for Physalis generally we have used periodic boundary
conditions at the boundary of the computational domain, the computational domain for
the multipole method has been assumed to be unbounded. It is well known that, by using
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Hasimoto’s method (see, e.g., Refs. [36–39]), a multipole method can be constructed for a
periodic system, but this approach leads to much lengthier computations and for simplicity
we have not pursued it.

The first set of results that we discuss is for the simplest case of two spheres arranged
along thez-axis and having a unit velocity in the direction of the positivez-axis (Figs. 5–
7). The situation is evidently axisymmetric in this case and all coefficientsb`m with m 6= 0
vanish. The inner cage is a cube with linear dimensions 3a. The size of this cage is relatively
large but was used in this example to better assess the performance of the overlapping cages
algorithm and the switch from two-particle to single-particle cages. The computational
domain consists of 10× 10× 30 cells.

In Fig. 5 we show the coefficientsb10 andb20 of the Legendre polynomialsP1 andP2 of
the inner expansion as functions of the distanced/a between the particle centers. These are
the coefficients of the upstream sphere; those for the downstream sphere behave similarly.
The lines are the multipole method results withL = 4 and|m| ≤ 4. The black circles are

FIG. 5. The coefficients ofP1 andP2 as a function of the distance between two particles moving in the same
direction, as computed by the multipole expansion method in an unbounded domain (solid line) and the current
method in a 10× 10× 30 periodic Cartesian domain; open circles:a/1x = 4; black circles:a/1x = 2. The cage
is a(3a)3 cube.
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the present result for a coarse grid witha/1x = 2, while the open circles are for a finer
grid with a/1x = 4. It should be stressed that here the diameter of the particle relative to
the mesh spacing is so large that, with a standard finite-difference method, the calculation
would be grossly underresolved.

Figure 5 demonstrates an excellent agreement forb20 even for the case in which the grid
spacing1x is as large as half the particle radius (black circles). In this case, there are at
most only 15 grid points inside or on the surface of the particle.

The comparison shown in Fig. 5 also demonstrates the insensitivity of the results to the
switch from the combined to the individual cages. For both grids, overlapping ceases when
the distance between the particles is greater than 3.5a. The only evidence of this transition
is a slight irregularity in the coarser-grid result forb10 at this distance. Here as well as in
all the other cases that we have tested, this irregularity disappears with a smaller1x.

The comparison shown in Fig. 6 is for the same situation, except that here, instead
of calculating the matrixB exactly for each position of the spheres, we have used the

FIG. 6. The coefficients ofP1 and P2 as a function of the distance between two particles of radiusa = 1
moving in the same direction, as computed by the multipole expansion method in an unbounded domain (solid
line) and the current method in a 10× 10× 30 periodic Cartesian domain; open circles:a/1x = 4; black circles:
a/1x = 2. The cage is a(3a)3 cube. These results differ from those of Fig. 5 in that matrix interpolation was used.
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interpolation scheme with 27 precomputed matrices mentioned in Section 5. It is evident
from these plots that the performance of the method is not degraded by the approximation.
The full significance of this conclusion can be better appreciated when a large number of
particles—e.g., 1000 or more—are present in the system, as in this case its adoption affords
a substantial memory saving without compromising accuracy.

It is interesting to note that a distanced/a = 2 corresponds to the two spheres touching.
Nevertheless, as shown in both Figs. 5 and 6, we can generate accurate results even for
d/a < 2, i.e., when the spheres are interpenetrating. This result is at first surprising, but
it is mathematically very obvious and simply corresponds to the analytic continuation of
the local expansions (7) inside the spheres, which is valid provided the distance between
the centers is greater than the sphere radius. This property can be useful to approximate the
shapes of other objects by “gluing together” several spheres.

Another interesting possibility suggested by this result is the use of cages contained
totally inside the particles. We have run a limited number of tests of this idea and we have
found it to work. The only negative is that, unless the mesh is sufficiently fine, there may
not be enough nodes inside the particle to determine a sufficient number of coefficients
b`m. Nevertheless, this is a potentially useful option that would render the multiple-cage
algorithm unnecessary and which we plan to pursue in future work.

Similar results for two spheres moving in opposite directions, again along thez-axis,
are shown in Fig. 7. Our first calculations of this situation showed a somewhat greater
discrepancy (about 0.3%) between the Physalis and the multipole results. When we changed
the conditions imposed at the boundary of the computational domain from periodic to
Dirichlet (φ = 0), the error decreased substantially; it is this latter solution that is shown
in Fig. 7. In this case the results are more sensitive to the grid spacing than before: the
finer mesh witha/1x = 4 gives results virtually indistinguishable from the multipole ones
while those produced by the coarser grid witha/1x = 2 are slightly worse. In this case it
is not possible to obtain convergence when the two spheres interpenetrate.

We have carried out similar comparisons with different cages, different computational
domain sizes, and a different number of coefficients (up toL = 8) retained in the local
expansion (7). In all cases we have found comparable or better results.

Moving on to more complex situations, we now summarize the results of extensive
simulations carried out with particle numbers ranging from 20 to 5000. The particle config-
urations were generated by inserting one sphere at a time in the computational domain. A
triplet (x, y, z) of random numbers was obtained from a standard random number generator
with equal probabilities in the three orthogonal directions. If the distance from the point
(x, y, z) to the center of the nearest particle was greater than a specified minimum (taken as
2.2a), a new sphere was placed at that location. Otherwise, a new triplet was obtained and
the process was continued until all the particles were positioned. Since we only considered
low-volume fractions, this simple method worked reliably and efficiently.

The calculations were carried out in a cubic domain with a Cartesian grid uniformly dis-
cretized with 128× 128× 128 nodes. Periodicity conditions were imposed at the boundary.
Each cage consisted of 4× 4× 4 nodes per particle with a mesh spacinga/1x = 1, i.e.,
two mesh lengths per particle diameter. All particles were assigned a unit velocity in thez
direction. As before, for each configuration, the performance of Physalis is compared with
that of the multipole method.

In Figs. 8 to 10 we show plots of the CPU time on a 600-MHz Pentium workstation with a
main memory of 256 MB as a function of the number of particles for the two methods. The
three figures differ in the number of terms kept in the local solution (7) around each particle:
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FIG. 7. The coefficients ofP1 andP2 as a function of the distance between two particles moving in opposite
directions, as computed by the multipole expansion method in an unbounded domain (solid line) and the current
method in a 10× 10× 30 Cartesian domain; open circles:a/1x = 4; black circles:a/1x = 2. The cage is a
(3a)3 cube.

Fig. 8 is for L = 1 (i.e., 3 coefficients), Fig. 9 forL = 2 (8 coefficients), and Fig. 10 for
L = 4 (24 coefficients); in all cases the second index|m| ranges from 0 up toL.

The figures show that, for a relatively small particle number, the multipole method is
much faster; this feature is a consequence of the fixed overhead associated with a large
discretized domain that can accommodate up to 5000 particles. An interesting feature of the
comparison, however, is the large difference in the slope of the lines, which makes Physalis
more efficient as the number of particles is increased above a certain level which decreases
as the accuracy requirements (as dictated by the maximum order of multipoles retained) are
increased. Thus, forL = 1, the CPU times are comparable for about 600 particles, but for
L = 4, Physalis becomes advantageous for 100 particles.

With the multipole method, both the CPU time and the size of the calculation increase with
the particle number and eventually the simulations fail due to lack of memory. Physalis, on
the other hand, seems not to be affected as much and exhibits an increase in the computational
effort that, in the range investigated, grows less than linearly with the number of particles.
The factor most responsible for this favorable scaling (and in particular the memory saving)
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FIG. 8. Comparison of the CPU time required for the multipole expansion method and Physalis. HereL = 1,
so that each particle is represented by 3 coefficients.

is the cage interpolation scheme described in Section 5. Another contributing factor is the
use of a direct Poisson solver which, for a given grid, takes about the same CPU time per
iteration regardless of the number of particles in the system. The CPU time is also seen
to be weakly dependent on the order of the local expansion, in contrast to the multipole
method. Finally, the results displayed in Figs. 8 to 10 show that the number of iterations
is substantially unaffected when more terms in the local expansion (7) are retained. As the
number of particles increases there is a proportional increase in the number of matricesB that
need to be evaluated and a slowing of the rate of convergence of the iterative scheme (19).

FIG. 9. Comparison of the CPU time required for the multipole expansion method and Physalis. HereL = 2,
so that each particle is represented by 8 coefficients.
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FIG. 10. Comparison of the CPU time required for the multipole expansion method and Physalis. HereL = 4,
so that each particle is represented by 24 coefficients.

Having illustrated the computational performance of the new method, we now turn to a
consideration of its accuracy in a practical situation with a large number of particles. For
these calculations the Cartesian computational domain is reduced to a size of(64a)3 with
all the particles randomly distributed in an inner(32a)3 cube. This arrangement minimizes
the differences due to the boundary conditions (periodic vs unbounded) imposed on the two
methods. We have discretized this domain with 1283 grid points yielding a grid spacing of
a/1x = 2. We retain multipoles up toL = 4 in the local solution as well as in the multipole
method expansion. As before, all particles have a unit velocity in thez-direction.

We have tested a large number of distributions and the results are available athttp://
plesset.me.jhu.edu/physalis . Here we only show comparisons of the quadrupole

FIG. 11. Comparison of the coefficientb20 as computed by Physalis and the multipole method for a system
of 20 particles.
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FIG. 12. Comparison of the coefficientb20 as computed by Physalis and the multipole method for a system
of 40 particles.

coefficientsb20 (cf. Eq. (7)) for simulations with 20, 40, and 60 particles, corresponding
to particle volume fractions of 0.256, 0.512, and 0.768%. Figure 11 shows the coefficients
b20 for each particle in a 20-particle system; the Physalis results are shown by the open
circles and the multipole ones by the black circles. The agreement is very good for all
the particles in the system. A similar comparison is shown in Fig. 12 for a 40-particle
system. It is reassuring to observe that the results are equally good in this system where
several dual cages are involved due to the higher particle density. Even more dual cages
are necessary when the particle number is increased to 60, but the results are equally good
(Fig. 13).

FIG. 13. Comparison of the coefficientb20 as computed by Physalis and the multipole method for a system
of 60 particles.
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FIG. 14. Comparison of the coefficientb20 as computed by Physalis and the multipole method for a system
of 60 particles; this figure differs from Fig. 13 in that here interpolation was used for theB-matrices.

The preceding results have been obtained by calculating the matrixB exactly for each
particle. In Fig. 14 we show a similar comparison when the matrices are obtained by
interpolation. The particle configuration and the discretization are identical to those of
Fig. 13 and we have used 27 matrices (3 in each direction) in our matrix table. Once again,
the comparison is excellent.

7. CONCLUSIONS AND OUTLOOK

We have presented in the simplest possible setting—potential flow—a new method for
the direct numerical simulation of disperse flows of spheres; a similar approach can be
followed for other particle shapes (e.g., cylinders), for which general exact local solutions
can be written in analytic form. Further extensions to numerically generated local solutions
may also be possible. The method can also be applied to other governing equations, such
as the Helmholtz equation, the diffusion equation, and the equations of linear elasticity.

Preliminary results for the Navier–Stokes equations have been presented in Ref. [30] and
further work will be described in future papers. The basic idea stems from the observation
that, in the (noninertial) rest frame of each particle, the no-slip condition at the particle
surface renders the Stokes equation (augmented by suitable apparent—or D’Alembert—
forces) valid in the immediate neighborhood of the particle surface. To be sure, the larger
the Reynolds number, the smaller the region where the Stokes equation gives an accurate
description of the flow; nevertheless, for any finite Reynolds number, a finite such region
can be identified. It is well known that the Stokes equation for a general flow near a sphere
possesses an exact solution in terms of a spherical harmonic expansion [40, 41], and this
local solution can be matched to the flow field at grid points surrounding the particle in the
same way as was done here for potential flow. For this application the use of cubic cages is
undesirable as it may extend the domain where the Stokes equation is assumed to hold to
an excessive distance from the particle. In order to minimize this problem, we have used a
cage made only of nodes about one mesh spacing away from the particle surface.



214 PROSPERETTI AND ÕGUZ

APPENDIX

The solution of the Laplace equation outside the spheres may be represented in terms of
Green’s function|x− x′|−1 of the Laplace operator as

φ′(x) =
N∑
α=1

1

4π

∫
Sα

[
φ′(x′)∇′ 1

|x− x′| −
1

|x− x′|∇
′φ′
]
· n′ dS′, (A.1)

whereφ′ = φ − φ∞, with φ∞ a regular solution of the Laplace equation (representing,
e.g., an imposed external flow) and the integrals are over each one of the surfacesSα, α =
1, 2 . . . , N, of theN particles; the time dependence is inessential and has been suppressed.
Upon settingx′ = yα + r , whereyα is the position of the center of theαth particle, the
Green’s functions centered at each particle can be expanded in Taylor series of ascending
powers ofa/|x− yα| to give rise to the well-known multipole expansion of the form

φ(x) = φ∞(x)+
N∑
α=1

∞∑
n=0

n∑
m=−n

1

|x− yα|n+1
Ym

n (θα, ϕα) dαnm. (A.2)

Consider now the neighborhood of a generic particle that, for convenience, may be labeled
as particle 1. In the region bounded by a sphere with radius equal to the distance between
particle 1 and the particle closest to it, the potential may be represented in the form (24)

φ =
∞∑
`=0

∑̀
m=−`

r `1Ym
` (θ1, ϕ1)c

1
`m +

∞∑
`=0

∑̀
m=−`

1

r `+1
1

Ym
` (θ1, ϕ1) d1

`m, (A.3)

wherer1 = |x− y1|, θ1, ϕ1 are spherical coordinates centered at the center of particle 1.
The expansion coefficientsd1

`m in this formula are the same as in (A.2), while thec1
`m are

determined by writing.

∞∑
`=0

∑̀
m=−`
|x− y1|`Ym

` (θ1, ϕ1)c
1
`m = φ∞ +

N∑
α=2

∞∑
`=2

∑̀
m=−`

1

|x− yα|`+1
Ym
` (θα, ϕα) dα`m.

(A.4)

This equation can be solved for thec1
`m by taking a scalar product with the generic spherical

harmonicYk
n to find, using orthogonality,

|x− y1|n
(
Yk

n ,Y
k
n

)
c1

nk =
(
Yk

n , φ∞
)+ N∑

α=2

∞∑
`=0

∑̀
m=−`

(
Yk

n ,
1

|x− yα|`+1
Ym
`

)
dα`m. (A.5)

The scalar products can be evaluated by using the results in Article 89 of Ref. [32]. The
result is an infinite system of algebraic equations that can be suitably truncated and solved
to express thedα`k, α = 2, 3 . . . , in terms of thec1

`k. On the other hand, thec1
`k’s can be ex-

pressed in terms of thed1
`k because of the boundary conditions at the surface of the spheres.

Therefore one finds an algebraic system in which the unknowns are thedα`k and the forcing
is provided byφ∞ and, possibly, a term related to the boundary conditions on the particle
surfaces, such as the particle velocities.
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