Journal of Computational Physié§7,196-216 (2001)

®
doi:10.1006/jcph.2000.6667, available online at http://www.idealibrary.col DE &l.

Physalis: A New o(N) Method for the Numerical
Simulation of Disperse Systems: Potential
Flow of Spheres

A. Prosperettiand H. N. Qjuz

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

Received March 20, 2000; revised October 19, 2000

This paper presents a new approach to the direct numerical simulation of potential
problems with many spherical internal boundaries, e.g., many spheres in potential
flow. The basic idea is to use a local analytic representation valid near the particle
and to match it to an external field calculated by a standard finite-difference (or
finite-element) method. In this way the geometric complexity arising from the irreg-
ular relation between the particle boundary and the underlying mesh is avoided and
fast solvers can be used. The results suggest that the computational effort increases
less than proportionally to the number of particles and, additionally, that meshes that
would be excessively coarse as measured in terms of particle radius in a conventional
calculation can be used without significant loss of accuracy. In separate (if prelimi-
nary) work the same approach has been extended to the simulation of viscous flow
about spheres and cylinders at finite Reynolds numbegs2001 Academic Press
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1. INTRODUCTION

The practical importance of disperse multiphase flows, coupled with great progres:
computational hardware and software, has motivated a strong interest in the direct nume
simulation of particle flows. While a good deal of effort has been directed to low-Reynolc
number flows (see, e.g., Refs. [1-8]) and to the simulation of flows containing point-li
suspended particles (e.g., Refs. [9-11]), several methods have also been develope
finite-size solid and fluid particles at finite Reynolds numbers. For example, Refs. [12—
describe finite-element methods for the calculation of particle flows in two and three spa
dimensions; Ref. [19] describes an approach based on the so-called immersed bour

1 Also Faculty of Applied Physics and Twente Institute of Mechanics, University of Twente, AE 7500 Ensche
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strategy [20], while Ref. [21] advocates solving the elasticity equations inside the partic
at the same time the Navier—Stokes equations are solved in the fluid. In the recent met
described in Refs. [22, 23], suitably augmented equations are solved both inside and ou
the particles, a strategy that has proven quite effective in the calculation of free surf
flows (see, e.g., Refs. [24-27]). An alternative approach, the so-called CHIMERA meth
consists of the use of a fixed global grid on which local grids, attached to each parti
move (see, e.g., Refs. [28, 29]).

An unquestionable strength of the methods mentioned so far is their adaptability
broad classes of solid and fluid particles, if at the cost of complexity and computatio
overhead. Here we present an alternative approach—lIess versatile because it can or
applied to particles with a simple shape, such as spheres and cylinders, but simpler
computationally efficient. This paper describes the method in its application to the simp
case, that of spheres in a potential field; some preliminary results for steady and unst
Navier—Stokes flow around spheres and cylinders have been presented in [30].

As explained below, our numerical experience to date suggests that the computati
load of the method grows less than proportionally to the number of parhcléhis feature
is common in methods (such as those of Refs. [24—27]) employing a fixed grid indepenc
of the number of particles. On the other hand, for many of the existing methods (e.g.,
potential [7, 31] or Stokes [7] flow), the computational effort increases at least linea
with N.

In some way, the method is similar in spirit to the CHIMERA approach but, unlike th
method, it relies on an exact analytical solution in the neighborhood of each particle, rat
than on a local numerical solution. One advantage is greater accuracy, as the interpol.
between the fixed and moving grids necessary with the CHIMERA approach is avoide

The basic idea underlying the present approach can be simply explained in the follow
terms. Enclose each particle by a surf&e(Fig. 1), and assume that the problem at hanc
is linear or can at least be approximately linearized in the region of space between
surface of the particle ang,. (How this can be achieved for the case of the Navier—Stoke
equations is mentioned below.) Let the solution of the problenggibe denoted by .
Then, by the linearity of the problem, there will be a linear opergférconnecting some
quantityy related top (perhapsp itself) evaluated on the particle surfacet8,

$9=G% +9g%, @

where we have allowed for the possible presence of a known forcingg®trhet So be

FIG. 1. Definition of surfacess, andSs enclosing a patrticle.
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another surface enclosing the same particle and, for example, inter8gl(tig. 1). For
this surface we may similarly write

¢” =G"y +g". )

By eliminatingy between these two relations, we find a consistency relation betpféen
and¢® that we write as

¢ =GP (G $C, 3)
where(G?)~1 may need to be understood as a generalized inverse and

¢=¢—0. (4)

If the mathematical nature of the problem is such that the satisfaction of the consiste
relation (3) ensures the correct solution in the region between the partic&atften the

boundary conditions at the surface of the particles can simply be replaced by a correspon
set of relations of the type (3) to be imposed between the valugsothe surfaceSp and

So surrounding each particle. In practice, an obvious advantage of this approach is tha
surfacesSp, Sg can be chosen to conform to a particular discretization of the computatior
domain so that the boundary condition on the particle surface—the satisfaction of wh
often requires irregular grids—can be simply transferred to the nodes of a regular grid.

An important conclusion of the well-posedness of an equation such as (3) stems \
simply by noting that, if the original problem is well poséd, andG? depend continuously
on the surface$p and Sy. Thus, if Se is close t0Sg, the operatog” (G?)~* would be
close to the identity operator.

The previous description is very general and leaves many details—both mathemat
and numerical—unexplained. In the rest of the paper we present a detailed expositior
the case of potential flow from which several valuable numerical features of the mett
will become apparent. In the last section we comment on how the approach can be extel
to other problems. These extensions will be described in future articles.

We call our method Physalfs.

2. POTENTIAL FLOW

Consider the potential flow around a number of spherical particles or bubbles, not ne«
sarily all with the same radius. In particular, the radius may depend on time, although,
simplicity, we do not explicitly consider this case here.

The velocity potentiad satisfies Laplace’s equation

V% =0, (5)
subject, on the surface of each particle, to the condition
(Vop—w)-n=0 on|x—y|l=a. (6)

2 According to Webster's Dictionary, this word denotes, a genus of herbs characterized by a bladdery c:
which encloses an edible fruit; also called ground cherry. In French the word also stands for “amour en cage
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Herey is the instantaneous position of the particle centethe instantaneous particle
velocity, n the outward unit normal, aralthe particle radius.

The general solution of the problem in the neighborhood of the generic particle may
written down at once and is

o ¢ , ¢ attl a3
P => > (r +£+1r5+1) Y70, @)bim = 5 5W- (X = Y), @)
=0 m=—¢

where the position vector is written asx =y + r, with the vectom expressed in terms
of spherical coordinates,(, ¢) centered at the center of the particle; ¥feare spherical
harmonics and, by varying the coefficiehts, the totality of possible potential flows around
the sphere can be captured. In the absence of other boundaries, the series in (7) con\
at all pointsx inside a sphere with radius equal to the distance between the centers of
given sphere and the sphere closest to it.

If (7) is evaluated at the point® of a surfaceSy enveloping the sphere, we have
a particular case of the general relation (1) in whighs an infinite-dimensional vector
containing the coefficients,, the operatog < is the summation with coefficients evaluated
at the points ofS, and the functiorg® is the last term of (7) proportional t, also
evaluated at the points &. The standard theory of spherical harmonic expansions (s
e.g., Ref. [32]) ensures that, giver?, all the coefficientd,, can be uniquely calculated;
for example, ifSq is a sphere of radiuR, we have

3

+1
(R‘ , L a > (YY) bem = <Y{“, b+ 2w x— y)> , €)

{4+ 1R+ 2r3

where (,) denotes the scalar product over the unit sphere. We thus conclude that the ope
GQ is well defined. Analogous considerations applgfoandg® when (7) is evaluated at
the points ofSp.

The developments in this section have been explicitly written down for the case of
Neumann problem (6). It is obvious that a similar treatment can be followed for Dirichl
or mixed boundary conditions.

3. NUMERICAL FORMULATION

We now describe a numerical method for implementing the basic idea outlined at the
of Section 1. The particular implementation we describe is based on finite differences wh
on regular domains, give rise to algebraic systems that can be solved noniteratively with
solvers. Onirregular domains it might be advantageous to use a finite-element discretizz
to which the present method can be adapted equally well. For brevity, however, we do
consider this possibility further.

The first step is to discretize the surfacsand Sy by approximating them by “cages”
consisting of a finite number of pointdp and Nq, respectively. In the finite-difference
formulation that we use, these points will be taken to belong to the regular grid into whi
the computational domain is discretized. Figure 2 shows square (or cubic) cages of
points, but there could be good reasons to use other shapes, e.g., in the Navier—Stokes
Next, we truncate the summation in (7) to a maximum vélu# the index¢, which has the
effect of retaining only the first (L + 2) coefficientsb,,,. We assemble these remaining
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FIG. 2. Discretization of surfaceS; andSe enclosing a particle intdl, andNg points.

coefficients in a vectob = {bx}, k=1, 2,..., L(L + 2), where the indeX is shorthand
for the pair of indices¢, m). We assume thdlg > L(L + 2).

We now introduce an ordering of the outer cage points, denote@:byy. . .., Qn,.,
and a corresponding ordering for the poils P», ..., Py, of the inner cage. With this
discretization, the operat@® is approximated by thég x L(L + 2) matrix G with
elements

Q ' ¢ attl
h

where €h, 6h, ¢n) are the coordinates of theh point of the outer cage with respect to the
particle center ankl = (¢, m). Note that this matrix only depends on the relative position o
the sphere center with respect to the points of the outer cage. In a similar way, the func
g? has been discretized into &in-dimensional vectog? with components

Q a®
O = —53W" Xh —Y). (10)
Ih

With this discretization Eqg. (1) becomes
#° = G®%b 4 g°. (12)

An effective way to find the generalized inverse ®R is to use the singular-value
decomposition (see, e.g., Refs. [33, 34])

G? =uDV", (12)

whereD is a squareL (L + 2) x L(L + 2) diagonal matrix,V is anotherL(L + 2) x
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L(L + 2) square matrix, antd is Ng x L(L + 2); these matrices satisfy
ulu=1, w' =1, (13)

wherel denotes identity matrices of suitable dimension. By using these properties,
readily find

GO t=vD U, (14)

and we may write (3) in the form

¢" =B, (15)
where theNp x Ng matrix B is given by
B=GPvD U, (16)
and
$=¢—0. (17)

Equation (15) is the discrete version of the consistency condition (3) and, as noted nea
end of Section 1, the matrix (16) may be expected not to differ too much from the ident
matrix and to be therefore well-conditioned. This expectation is borne out by our numeri
experience.

Following the plan outlined in Section 1, itis now necessary to solve the Laplace equa
on the domain imposing relations of the form (15) on the nodes that constitute the ca
attached to each particle. For this purpose we let

Lé =0 (18)

be a finite-difference discretization of the Laplace equation (5). Then the conditions (3)
imposed iteratively solving

Lo/ +t = Mfi, (19)

where the superscript denotes the iteration num¥ies, a projector on thé-nodes of the
inner cages, and

f =L+ BC(¢F —BpQ), (20)

whereg is a relaxation factor (chosen to be around 0.1)@ride common diagonal element
of L. As j increases, the solution of (19) tends to the solution of (18) at all nodes other tt
those belonging to the inner cage. For these latter nodes, at convergence, one has

Lo = Lo + BC(67 — B9, (21)

i.e., (15). Since the satisfaction of this relation also implies that of the Laplace equati
we thus conclude that the procedure generates a discrete approximation to the solutic
the Laplace equation over the entire computational domain. For the solution of the sys
(19) we use a fast solver; the iterative procedure—which is in effect the way in whi
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information is exchanged between the cages and the surrounding flow—is only neede
implement the constraint (15).

After convergence, the potential at the grid nodes outside the cages is given by the solt
of (19), while, in the inner regions between each particle and the cage, it is represente
the spherical harmonic expansion (7) with coefficients that can be calculated from (12);
evaluating (7) at all the grid nodes in the inner region and on the cage, one then compl
the calculation of the potential at all the grid nodes exterior to the particles.

As a final comment, it may be noted that the method contains in some sense a buil
accuracy check in that the very fact that convergence of the iterative process occurs en:
that the potential is accurately representedoth cagesby thesameset of coefficients.
This feature implies that, within the error limits set for convergence, the local expansi
and the outer solution match in the region between the two cages.

In the examples that we consider here the computational domain is regular and one
take advantage of the existence of fast Poisson solvers for such domains to considerab
crease the efficiency of the computation. For these solvers to work effectively, it is neces:s
to solve (19) everywhere and, therefore, also inside the cages surrounding the particles.
solution of the Laplace equation generated in this way is simply the solution of a regu
potential flow satisfying given boundary conditions on the cage boundary. Although r
relevant for the problem at hand, this is a well-defined mathematical entity. If algorithr
other than fast solvers are used, then the regions interior to the cages may of cours
skipped.

4. OVERLAPPING CAGES

When two or more spheres are close, it may happen that the respective cages ov
(Fig. 3). We now describe a procedure for handling this situation. The details are tedit
but straightforward and an abbreviated description will be sufficient.

VNI L
J\r ¥

W

FIG. 3. Discretization of surfaceS, andS, enclosing two particles.
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Let there bep particles inside the surface (cag®). Then it can easily be proven, e.g.,
by a series expansion of Green’s formula as shown in the Appendix, that inside the c
the potential may be represented as

12

P o0
b= Y Y NG v+ S S VG e (22

a=1¢(=0m=—¢ ¢ (=0 m=—¢

where(r,, 6, ¢,) are spherical coordinates centered at the center aftihesphere and
(r, 0, ) are spherical coordinates centered, e.g., at the centroid of the volume bounde
So. By discretizing the problem as before, we may rewrite this equation as

¢ = Fd + He, (23)

where the vectord, e contain all the coefficientfds; }, {€;,} for all the particles, and the
matricesF, H are analogous tG defined in (9).

In the neighborhood of each sphere the potential may be represented analogously t
used before:

o) 4
9 =33 1Y Ou. ga)b +Z Z Z+1Ym(9a,sao,)cgm (24)
£=0 m=—¢ =0 m=—¢ 0‘

Of course, in the case of the Neumann problem (6), this expansion takes the form (7)
here, for the sake of generality, we do not commit ourselves to the Neumann problem.
merely note that the boundary condition on the surface of the spheres will lead to a lin
relation of the type

d=Cc+f, (25)

where the vectot contains the coefficientg;,,} andf will depend on the known quantities
prescribed on the sphere, such as the translational vele@fithe previous section.

Our objective is to derive a relation analogous to (1) valid on the outer cage, after wh
the same procedure as before can be followed. For this purpose we start by noting tha
problem of relating the coefficients!y;,}, {e:m} to the {bf }, {c,} is solved in Ref. [32]
(see also Ref. [35]) and leads to a relation of the form (see the Appendix)

¢ = Dd + Ee, (26)

whereD, E are suitable (infinite) matrices. By using this relation to elimiraf®m (25)
and solving ford we find

d= (-CD)"}CEe-), (27)
which, when substituted into (23) evaluated at the poipitéeads to
¢° =G%+g®, (28)
with
G=F(I-CD)'CE+H, g=—-F(-CD)™!. (29)

The relation (28) is analogous to (1) in that it connects the valugsmf the outer cage
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to the set of coefficients appearing in that parpatat is regular inside the cage. From
this point on, the same method described in the previous section can be followed for
numerical solution. Our numerical experience shows that the matrices introduced in-
section are well behaved and the required inverses exist.

5. NUMERICAL DETAILS

The method isimplemented in a box-shaped domain of dimenXipvisandZ uniformly
discretized by means dfy + 1, Ny + 1, andN, + 1 grid points in the three orthogonal
directions. The grid spacings are given Bx = X/Ny, Ay = Y/Ny, and Az = Z/N;
in the numerical examples that follow we have var¥dY, and Z while maintaining
AX = Ay = Az

We start with a set o spherical particles, each with a velocity, = (Uy, vy, wy), @ =
1,2,..., N, centered at given positiong, = (X4, Yu, Z)- In principle the method can
be applied to systems with different, possibly time-dependent particle sizes, but, for
examples considered in this paper, all particles have the same fixed aadius

For each particle a “cage” must be constructed. For ease of coding and efficiency
computation in this paper we use cubic cages, but this choice is not essential. In particul;
proves undesirable for flow at finite Reynolds numbers for the reasons mentioned below
also [30]). Ifx, is the grid point closest to the center of thi particle and corresponding to
indicesi, = (i, ju, Ky), the cage is constituted by the grid points with indices %NC <
i <ig+ %NC, and similarly for the other directions. The even intefjkris large enough
that the particle fits comfortably inside the cage; it ranges from 6 for low-resolution gri
with a/Ax = 1 to 24 for larger cages or fine-resolution grids vaymx = 4.

The six faces of the cube define the inner c&gelescribed in the previous section. The
outer cageSy is constructed from the inner one by displacing the six faces outward by
certain number of grid spacings. This number is normally chosen to be 1, as in the c
shown in Fig. 2, although we have also tested cases with 2 or more grid spacings witt
noticing any significant difference in the results. It is important to stress that the need
impose proper boundary conditions on the outer solution dictates that the inner cage for
complete (if discretized) closed surface. However, the outer cage is only used to detern
the expansion coefficients by collocation according to Eq. (11), and, therefore, it only ne
to have a sufficient number of grid points that this equation be solvable. Hence it is expec
that “gaps,” or openings (e.g., at the corners), would not adversely affect the computat
which conforms to our numerical experience.

With P (inner) andQ (outer) points defined in this fashion the matri@%andG® can
be constructed and combined to form the maBidefined in (16). As noted before, for a
given cage shape and size, these matrices depend only on the particle radius and the loc
of the particle center with respect to the grid points of the mesh. If, for example, all t
particle centers happened to coincide with grid points, alBheatrices for each particle
would be identical. Of course, this situation would not normally occur, and, in principl
these matrices would need to be computed at each time step for each particle dependir
the position of that particle with respect to the fixed grid. With a large number of particl
this requirement can be an excessive burden in terms of both computation and memon
alleviate this problem we use interpolation as follows. At the beginning of the calculatit
we compute théB-matrices for a certain number of positions of the particle center wit
respect to the grid, and then we effect a three-dimensional interpolation to approximate
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FIG. 4. The cage is centered at the center of the shaded region whenever the particle center is anywhe
this region. The open circles (and the analogous points in the third dimension) are the points correspondir
which aB-matrix is computed. ThB-matrices for other particle positions are obtained by interpolation. In thre:
dimensions the procedure requires the computations of a total Bfr@atrices.

B-matrix appropriate for the actual position of each particle. If we dafine y, — x,,
then it is clear that all the possible arrangements of the particle with respect to the ¢
correspond to the range%Ax <rIy < %Ax, and similarly for the other two directions.
Hence we pickNi,; regularly spaced points in a cube of sideg, Ay, Az centered at a
grid point and calculat8-matrices for each one of thedg,; positions (Fig. 4). With this
information, a look-up table d8-matrices is constructed from which each element of th
B-matrix corresponding to any particle position is obtained by linear interpolation. In ti
examples that follow this idea was implemented by taliyg = 27.

When two particles are so close to each other that their inner cages touch or ovel
the code automatically switches to the scheme described in Section 4 and merges the
cages. The points of the original cages that lie inside the merged cage are removed
a newB-matrix is computed from (24) rather than from (11). In this case the number
possible geometric arrangements is too large for an interpolation scheme to be efficient
itis best to compute the matrices directly. For the cases described in this paper this diffic
has not been a major drawback since the number of overlapping cages was usually sn

The Poisson equation (19) has been solved by means of a fast solver from the pac
FISHPACK freely available fronmttp://netlib.org

6. ILLUSTRATIVE RESULTS

To validate the proposed new method we have made many comparisons betweer
results of the present method and those given by the multipole expansion method (
e.g., Refs. [35, 36]), which is based essentially on the use of the representation (22) fo
potential. In addition to ensuring the agreement of the two sets of results, it was importar
demonstrate that the present new results are independent of the cage size. The comp:
has also enabled us to assess the computational efficiency of Physalis with respect t
multipole method.

It should be noted that, while for Physalis generally we have used periodic bound
conditions at the boundary of the computational domain, the computational domain
the multipole method has been assumed to be unbounded. It is well known that, by u.
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Hasimoto’s method (see, e.g., Refs. [36—39]), a multipole method can be constructed f
periodic system, but this approach leads to much lengthier computations and for simpli
we have not pursued it.

The first set of results that we discuss is for the simplest case of two spheres arrar
along thez-axis and having a unit velocity in the direction of the positavexis (Figs. 5—
7). The situation is evidently axisymmetric in this case and all coefficlepisvith m #£ 0
vanish. The inner cage is a cube with linear dimensi@nd Be size of this cage is relatively
large but was used in this example to better assess the performance of the overlapping ¢
algorithm and the switch from two-particle to single-particle cages. The computatior
domain consists of 1& 10 x 30 cells.

In Fig. 5 we show the coefficientsy andb,g of the Legendre polynomialg, and P, of
the inner expansion as functions of the distatht® between the particle centers. These are
the coefficients of the upstream sphere; those for the downstream sphere behave simi
The lines are the multipole method results with= 4 and|m| < 4. The black circles are
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FIG.5. The coefficients oP; andP, as a function of the distance between two particles moving in the sam
direction, as computed by the multipole expansion method in an unbounded domain (solid line) and the cur
method in a 10« 10 x 30 periodic Cartesian domain; open circlesAx = 4; black circlesa/Ax = 2. The cage
is a(3a)® cube.
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the present result for a coarse grid wghAx = 2, while the open circles are for a finer
grid with a/Ax = 4. It should be stressed that here the diameter of the particle relative
the mesh spacing is so large that, with a standard finite-difference method, the calcule
would be grossly underresolved.

Figure 5 demonstrates an excellent agreemerisfpeven for the case in which the grid
spacingAXx is as large as half the particle radius (black circles). In this case, there are
most only 15 grid points inside or on the surface of the particle.

The comparison shown in Fig. 5 also demonstrates the insensitivity of the results to
switch from the combined to the individual cages. For both grids, overlapping ceases w
the distance between the particles is greater tham 31ae only evidence of this transition
is a slight irregularity in the coarser-grid result top at this distance. Here as well as in
all the other cases that we have tested, this irregularity disappears with a staller

The comparison shown in Fig. 6 is for the same situation, except that here, inst
of calculating the matriX8 exactly for each position of the spheres, we have used tt

~0.350 . . x .
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o -0.425
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FIG. 6. The coefficients ofP, and P, as a function of the distance between two particles of radigsl
moving in the same direction, as computed by the multipole expansion method in an unbounded domain (
line) and the current method in a 3010 x 30 periodic Cartesian domain; open circlagAx = 4; black circles:
a/Ax = 2. The cage is &3a)° cube. These results differ from those of Fig. 5 in that matrix interpolation was use



208 PROSPERETTI AND GUZ

interpolation scheme with 27 precomputed matrices mentioned in Section 5. It is evid
from these plots that the performance of the method is not degraded by the approxima
The full significance of this conclusion can be better appreciated when a large numbe
particles—e.g., 1000 or more—are present in the system, as in this case its adoption aff
a substantial memory saving without compromising accuracy.

It is interesting to note that a distandg¢a = 2 corresponds to the two spheres touching
Nevertheless, as shown in both Figs. 5 and 6, we can generate accurate results eve
d/a < 2, i.e., when the spheres are interpenetrating. This result is at first surprising,
it is mathematically very obvious and simply corresponds to the analytic continuation
the local expansions (7) inside the spheres, which is valid provided the distance betw
the centers is greater than the sphere radius. This property can be useful to approximat
shapes of other objects by “gluing together” several spheres.

Another interesting possibility suggested by this result is the use of cages contail
totally inside the particles. We have run a limited number of tests of this idea and we ha
found it to work. The only negative is that, unless the mesh is sufficiently fine, there m
not be enough nodes inside the particle to determine a sufficient number of coefficie
b.m. Nevertheless, this is a potentially useful option that would render the multiple-ca
algorithm unnecessary and which we plan to pursue in future work.

Similar results for two spheres moving in opposite directions, again along-&ixés,
are shown in Fig. 7. Our first calculations of this situation showed a somewhat gree
discrepancy (about 0.3%) between the Physalis and the multipole results. When we chal
the conditions imposed at the boundary of the computational domain from periodic
Dirichlet (¢ = 0), the error decreased substantially; it is this latter solution that is shov
in Fig. 7. In this case the results are more sensitive to the grid spacing than before:
finer mesh witha/ Ax = 4 gives results virtually indistinguishable from the multipole ones
while those produced by the coarser grid watlhAx = 2 are slightly worse. In this case it
is not possible to obtain convergence when the two spheres interpenetrate.

We have carried out similar comparisons with different cages, different computatior
domain sizes, and a different number of coefficients (uph te 8) retained in the local
expansion (7). In all cases we have found comparable or better results.

Moving on to more complex situations, we now summarize the results of extensi
simulations carried out with particle numbers ranging from 20 to 5000. The particle conf
urations were generated by inserting one sphere at a time in the computational domai
triplet (x, y, ) of random numbers was obtained from a standard random number gener:
with equal probabilities in the three orthogonal directions. If the distance from the po
(X, v, 2) to the center of the nearest particle was greater than a specified minimum (take
2.2a), a new sphere was placed at that location. Otherwise, a new triplet was obtained
the process was continued until all the particles were positioned. Since we only conside
low-volume fractions, this simple method worked reliably and efficiently.

The calculations were carried out in a cubic domain with a Cartesian grid uniformly di
cretized with 128x 128 x 128 nodes. Periodicity conditions were imposed at the boundar
Each cage consisted ofsd4 x 4 nodes per particle with a mesh spacayg\x = 1, i.e.,
two mesh lengths per particle diameter. All particles were assigned a unit velocityan th
direction. As before, for each configuration, the performance of Physalis is compared v
that of the multipole method.

In Figs. 8 to 10 we show plots of the CPU time on a 600-MHz Pentium workstation with
main memory of 256 MB as a function of the number of particles for the two methods. T
three figures differ in the number of terms kept in the local solution (7) around each partic



PHYSALIS: A NEW O(N) METHOD 209

0.54 T T

0.53}
2
S 052

0.51

0.50

Distance

0.032 T T T

0.028 B

0.024 4

T

0.020 i

S
o016 .

0.012 ~

T

0.008

T
QO

0.004 E

1
3 4 5 6
Distance

0.000
2

FIG. 7. The coefficients o, andP; as a function of the distance between two particles moving in opposit
directions, as computed by the multipole expansion method in an unbounded domain (solid line) and the cu
method in a 10« 10 x 30 Cartesian domain; open circleg:Ax = 4; black circlesa/Ax = 2. The cage is a
(3a)® cube.

Fig. 8 is forL = 1 (i.e., 3 coefficients), Fig. 9 fot = 2 (8 coefficients), and Fig. 10 for
L = 4 (24 coefficients); in all cases the second inffakranges from O up td..

The figures show that, for a relatively small particle number, the multipole method
much faster; this feature is a consequence of the fixed overhead associated with a |
discretized domain that can accommodate up to 5000 particles. An interesting feature o
comparison, however, is the large difference in the slope of the lines, which makes Phy:s
more efficient as the number of particles is increased above a certain level which decre
as the accuracy requirements (as dictated by the maximum order of multipoles retained
increased. Thus, fdr = 1, the CPU times are comparable for about 600 particles, but fc
L = 4, Physalis becomes advantageous for 100 particles.

With the multipole method, both the CPU time and the size of the calculationincrease v
the particle number and eventually the simulations fail due to lack of memory. Physalis,
the other hand, seems notto be affected as much and exhibits anincrease inthe computa
effort that, in the range investigated, grows less than linearly with the number of particl
The factor most responsible for this favorable scaling (and in particular the memory savi
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FIG.8. Comparison of the CPU time required for the multipole expansion method and Physalis. Hete
so that each particle is represented by 3 coefficients.

is the cage interpolation scheme described in Section 5. Another contributing factor is
use of a direct Poisson solver which, for a given grid, takes about the same CPU time
iteration regardless of the number of particles in the system. The CPU time is also s
to be weakly dependent on the order of the local expansion, in contrast to the multip
method. Finally, the results displayed in Figs. 8 to 10 show that the number of iteratic
is substantially unaffected when more terms in the local expansion (7) are retained. As
number of particles increases there is a proportional increase in the number of nitiniates

need to be evaluated and a slowing of the rate of convergence of the iterative scheme

multipole --e&- ; physalis --O-

CPU seconds

10—2 i I )
10! 10? 10° 10*

Number of particles

FIG.9. Comparison of the CPU time required for the multipole expansion method and Physali. He2e
so that each particle is represented by 8 coefficients.
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FIG.10. Comparison ofthe CPU time required for the multipole expansion method and Physali&. Hete
so that each particle is represented by 24 coefficients.

Having illustrated the computational performance of the new method, we now turn ti
consideration of its accuracy in a practical situation with a large number of particles. |
these calculations the Cartesian computational domain is reduced to a gsZa)dfwith
all the particles randomly distributed in an inr@2a)° cube. This arrangement minimizes
the differences due to the boundary conditions (periodic vs unbounded) imposed on the
methods. We have discretized this domain with®1@&d points yielding a grid spacing of
a/Ax = 2. We retain multipoles up tb = 4 in the local solution as well as in the multipole
method expansion. As before, all particles have a unit velocity irz-flieection.

We have tested a large number of distributions and the results are availhtife/at
plesset.me.jhu.edu/physalis . Here we only show comparisons of the quadrupole

Multipole o, Physalis O
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g 0.0000F @ @ ® @ @

< —0.0007}
-0.0002} ® y
-0.0003}% @ @ 4
~0.0004} .
~0.0005} .
~0.0006} ® .

_0.0007 1 H L 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Particle

FIG. 11. Comparison of the coefficiett, as computed by Physalis and the multipole method for a syster
of 20 particles.
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FIG. 12. Comparison of the coefficietty as computed by Physalis and the multipole method for a systen

of 40 particles.

coefficientshyq (cf. Eq. (7)) for simulations with 20, 40, and 60 particles, correspondin
to particle volume fractions of 0.256, 0.512, and 0.768%. Figure 11 shows the coefficie
b, for each particle in a 20-particle system; the Physalis results are shown by the o
circles and the multipole ones by the black circles. The agreement is very good for
the particles in the system. A similar comparison is shown in Fig. 12 for a 40-partic
system. It is reassuring to observe that the results are equally good in this system w
several dual cages are involved due to the higher particle density. Even more dual c:
are necessary when the particle number is increased to 60, but the results are equally

(Fig. 13).
Mulirpole o, Physalis O
0.004 . . . . 1
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@
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®
0.001} @ 4
; o ®L0
® K @® |
0.000 | @ oo . ® ® S
e e® y @ @
~0.0019® @ @ h
®
-0.002} ® i
®
-0.003 ' ' ' ] ‘
0 10 20 30 40 50 60
Particle

FIG. 13. Comparison of the coefficietby as computed by Physalis and the multipole method for a systen
of 60 particles.
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FIG. 14. Comparison of the coefficiett, as computed by Physalis and the multipole method for a syster
of 60 particles; this figure differs from Fig. 13 in that here interpolation was used f@-thatrices.

The preceding results have been obtained by calculating the nBagkactly for each
particle. In Fig. 14 we show a similar comparison when the matrices are obtained
interpolation. The particle configuration and the discretization are identical to those
Fig. 13 and we have used 27 matrices (3 in each direction) in our matrix table. Once ag
the comparison is excellent.

7. CONCLUSIONS AND OUTLOOK

We have presented in the simplest possible setting—potential flow—a new method
the direct numerical simulation of disperse flows of spheres; a similar approach can
followed for other particle shapes (e.qg., cylinders), for which general exact local solutic
can be written in analytic form. Further extensions to numerically generated local solutic
may also be possible. The method can also be applied to other governing equations,
as the Helmholtz equation, the diffusion equation, and the equations of linear elasticity

Preliminary results for the Navier—Stokes equations have been presented in Ref. [30]
further work will be described in future papers. The basic idea stems from the observa
that, in the (noninertial) rest frame of each particle, the no-slip condition at the parti
surface renders the Stokes equation (augmented by suitable apparent—or D’Alembe
forces) valid in the immediate neighborhood of the particle surface. To be sure, the la
the Reynolds number, the smaller the region where the Stokes equation gives an acc
description of the flow; nevertheless, for any finite Reynolds number, a finite such reg
can be identified. It is well known that the Stokes equation for a general flow near a spt
possesses an exact solution in terms of a spherical harmonic expansion [40, 41], anc
local solution can be matched to the flow field at grid points surrounding the particle in t
same way as was done here for potential flow. For this application the use of cubic cag
undesirable as it may extend the domain where the Stokes equation is assumed to hc
an excessive distance from the particle. In order to minimize this problem, we have us
cage made only of nodes about one mesh spacing away from the particle surface.
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APPENDIX

The solution of the Laplace equation outside the spheres may be represented in tern
Green'’s functiorix — x'|~* of the Laplace operator as

! N 1 ' / ! ! 1 1 ! g/ /
¢(x)=Z:4ﬂ/J¢(x)v X _v'¢/| - dS, (A1)

X' X=X

where¢’ = ¢ — ¢, With ¢, a regular solution of the Laplace equation (representing
e.g., an imposed external flow) and the integrals are over each one of the s&faces
1,2..., N, oftheN particles; the time dependence is inessential and has been suppres
Upon settingk’ =y, + r, wherey, is the position of the center of theth particle, the
Green'’s functions centered at each particle can be expanded in Taylor series of ascer
powers ofa/|x — Y, | to give rise to the well-known multipole expansion of the form

N oo n
PO = Poo(X) + ZZ > m Y s 9o) iy (A2)

=0 m=-n

Consider now the neighborhood of a generic particle that, for convenience, may be lab
as particle 1. In the region bounded by a sphere with radius equal to the distance betv
particle 1 and the particle closest to it, the potential may be represented in the form (24

¢ = Z Z I’lYm(Gl, (pl)C[m-i-Z Z K+1Y (01, 91) dgm» (A-3)

=0 m=—¢ =0 m_—Z

wherer; = |X — y1|, 61, @1 are spherical coordinates centered at the center of particle
The expansion coefficientt., in this formula are the same as in (A.2), while g are
determined by writing.

[eS) 4 N oo l
DN =yl YO e)Ci =+ DD D v |m YO ) Ay
£=0 m=—¢ a=2 {=2 m=—¢

(A.4)

This equation can be solved for tb, by taking a scalar product with the generic spherica
harmonicYX to find, using orthogonality,

N oo
1
|X_yl| (Yk Yk) nk - ( rl](’ ¢OO) +ZZ Z <le1<, |X—y|e+1YZm> d?m. (A5)

The scalar products can be evaluated by using the results in Article 89 of Ref. [32]. T
result is an infinite system of algebraic equations that can be suitably truncated and so
to express the%, @ = 2, 3. .., in terms of thecl,. On the other hand, th&,’s can be ex-
pressed in terms of th#}, because of the boundary conditions at the surface of the spher:
Therefore one finds an algebraic system in which the unknowns adg thad the forcing

is provided byp., and, possibly, a term related to the boundary conditions on the partic
surfaces, such as the particle velocities.
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